Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains

نویسنده

  • Yong HU
چکیده

— Let R be a 2-dimensional normal excellent henselian local domain in which 2 is invertible and let L and k be its fraction field and residue field respectively. Let ΩR be the set of rank 1 discrete valuations of L corresponding to codimension 1 points of regular proper models of Spec R. We prove that a quadratic form q over L satisfies the local-global principle with respect to ΩR in the following two cases: (1) q has rank 3 or 4; (2) q has rank > 5 and R = A[[y]], where A is a complete discrete valuation ring with a not too restrictive condition on the residue field k, which is satisfied when k is C1. Résumé. — Soit R un anneau local intègre de dimension 2, normal, excellent et hensélien dans lequel 2 est inversible. Soient L son corps de fractions et k son corps résiduel. Soit ΩR l’ensemble des valuations discrètes de rang 1 de L correspondant aux points de codimension 1 des modèles propres réguliers de Spec R. On démontre qu’une forme quadratique q sur L satisfait le principe local-global par rapport à ΩR dans les deux cas suivants : (1) q est de rang 3 ou 4 ; (2) q est de rang > 5 et R = A[[y]], où A est un anneau de valuation discrète complet, avec une condition sur le corps résiduel k qui est satisfaite lorsque k est C1. 1. Statements of results Let R be a 2-dimensional excellent henselian local domain and let L and k be respectively its fraction field and residue field. Assume that the characteristic of k is not 2. Colliot-Thélène, Ojanguren and Parimala [2] proved that any quadratic form of rank at least 5 over L is isotropic when k is separably closed, and that the local-global principle with respect to all discrete valuations (of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Forms Over Fraction Fields of Two-dimensional Henselian Rings and Brauer Groups of Related Schemes

Let A be an excellent henselian two-dimensional local domain (for the definition of excellent rings, see [EGA IV2, 7.8.2]). Let K be its field of fractions and k its residue field. Assume that k is separably closed (of arbitrary characteristic). We show that the unramified Brauer group of K (with respect to all rank 1 discrete valuations of K) is trivial. Under some more restrictive conditions ...

متن کامل

Sums of Squares of Linear Forms

Let k be a real field. We show that every non-negative homogeneous quadratic polynomial f(x1, . . . , xn) with coefficients in the polynomial ring k[t] is a sum of 2n · τ(k) squares of linear forms, where τ(k) is the supremum of the levels of the finite non-real field extensions of k. From this result we deduce bounds for the Pythagoras numbers of affine curves over fields, and of excellent two...

متن کامل

Quadratic Forms over Global Fields

1. The Hasse Principle(s) For Quadratic Forms Over Global Fields 1 1.1. Reminders on global fields 1 1.2. Statement of the Hasse Principles 2 2. The Hasse Principle Over Q 3 2.1. Preliminary Results: Reciprocity and Approximation 3 2.2. n ≤ 1 6 2.3. n = 2 6 2.4. n = 3 6 2.5. n = 4 8 2.6. n ≥ 5 9 3. The Hasse Principle Over a Global Field 9 3.1. n = 2 10 3.2. n = 3 10 3.3. n = 4 11 3.4. n ≥ 5 12...

متن کامل

Witt rings of quadratically presentable fields

This paper introduces an approach to the axiomatic theory of quadratic forms based on {tmem{presentable}} partially ordered sets, that is partially ordered sets subject to additional conditions which amount to a strong form of local presentability. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of {tmem{quadratically p...

متن کامل

Springer’s Theorem for Tame Quadratic Forms over Henselian Fields

A quadratic form over a Henselian-valued field of arbitrary residue characteristic is tame if it becomes hyperbolic over a tamely ramified extension. The Witt group of tame quadratic forms is shown to be canonically isomorphic to the Witt group of graded quadratic forms over the graded ring associated to the filtration defined by the valuation, hence also isomorphic to a direct sum of copies of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013